Eighth Edition

Software Engineering
A PRACTITIONER'S APPROACH

Roger S.
PRESSMAN

Bruce R.
MAXIM

Software Engineering

A PRACTITIONER’S APPROACH

This page intentionally left blank

Software Engineering

A PRACTITIONER’S APPROACH

EIGHTH EDITION

Roger S. Pressman, Ph.D.
Bruce R. Maxim, Ph.D.

Mc
Graw

Hill

Education

SOFTWARE ENGINEERING: A PRACTITIONER'S APPROACH, EIGHTH EDITION

Published by McGraw-Hill Education. 2 Penn Plaza, New York, NY 10121. Copyright © 2015 by McGraw-Hill
Education. All rights reserved. Printed in the United States of America. Previous editions © 2010. 2005, and
2001. No part of this publication may be reproduced or distributed in any form or by any means, or storedin a
database or retrieval system, without the prior written consent of McGraw-Hill Education, including, but not
limited to. in any network or other electronic storage or transmission. or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the
United States.

Thisbook is printed on acid-free paper.
1234567890D0OC/DOC 10987654

ISBN 978-0-07-802212-8
MHID 0-07-802212-6

Senior Vice President, Products & Markets: Director. Content Production: Terri Schiesl
Kurt L. Strand Project Manager: Heather Ervolino

Vice President, General Manager: Marty Lange Buyer: Sandy Ludovissy

Vice President, Content Production & Technology Cover Designer: Studio Montage, St. Louis, MO.

Services: Kimberly Meriwether David Cover Image: Farinaz Taghavi/Getty images
Managing Director: Thomas Timp Compositor: MPS Limited
Publisher: Raghu Srinivasan Typeface: 8.5/13.5 Impressum Std
Developmental Editor: Vincent Bradshaw Printer: R. R. Donnelley

Marketing Manager: Heather Wagner

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.
Library of Congress Cataloging-in-Publication Data

Pressman, Roger S.

Software engineering - apractitioner’'s approach /Roger S Pressman,
Ph.D. —Eighth edition.

pagescm

Includes bibliographical references and index.

ISBN-13: 978-0-07-802212-8 (alk. paper)

ISBN-10: 0-07-8022126 (alk. paper)
1. Software engineering. I Title.
QA76.758.P75 2015
005.1—dc23

2013035493

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a website
doesnot indicate an endorsement by the authors or McGraw-Hill Education, and McGraw-Hill Education does
not guarantee the accuracy of the information presented at these sites.

www.mhhe.com

To my granddaughters
Lily and Maya, who already
understand the importance
of sofiware, even though they're
still in preschool.
—Roger S. Pressman

In loving memory of
my parents, who taughi
me from an early age that
pursuing a good education
was far more important
than pursuing money.

—Bruce R. Maxim

ABOUT THE AUTHORS

Roger S. Pressman is an internationally recognized consultant and author in soft-
ware engineering. For more than four decades, he has worked as a software engi-
neer, amanager, a professor, an author, a consultant, and an entrepreneur.

Dr. Pressman is president of R. S. Pressman & Associates, Inc., a consulting
firm that specializes in helping companies establish effective software engineer-
ing practices. Over the vears he has developed a set of techniques and tools that
improve software engineering practice. He is also the founder of Teslaccessories,
LLC, a start-up manufacturing company that specializes in custom products for
the Tesla Model S electric vehicle.

Dr. Pressman is the author of nine books, including twonovels, and many techni-
cal and management papers. He has been on the editorial boards of IEEE Software
and The Cutter IT Journal and was editor of the “Manager” column in IEEE Software.

Dr. Pressman is a well-known speaker, keynoting a number of major industry
conferences. He has presented tutorials at the International Conference on Soft-
ware Engineering and at many other industry meetings. He has been a member of
the ACM, IEEE, and Tau Beta Pi, Phi Kappa Phi, Eta Kappa Nu, and Pi Tau Sigma.

Bruce R. Maxim has worked as a software engineer, project manager, professor,
author, and consultant for more than thirty years. His research interests include
software engineering, human computer interaction, game design, social media,
artificial intelligence, and computer science education.

Dr. Maxim is associate professor of computer and information science at the
University of Michigan—Dearborn. He established the GAME Lab in the College
of Engineering and Computer Science. He has published a number of papers on
computer algorithm animation, game development, and engineering education.
He is coauthor of a best-selling introductory computer science text. Dr. Maxim
has supervised several hundred industry-based software development projects
as part of his work at UM-Dearborn.

Dr. Maxim’s professional experience includes managing research informa-
tion systems at a medical school, directing instructional computing for a medical
campus, and working as a statistical programmer. Dr. Maxim served as the chief
technology officer for a game development company.

Dr. Maxim was the recipient of several distinguished teaching awards and a
distinguished community service award. He is a member of Sigma Xi, Upsilon Pi
Epsilon, Pi Mu Epsilon, Association of Computing Machinery, IEEE Computer
Society, American Society for Engineering Education, Society of Women Engineers,

and International Game Developers Association.
vi

CHAPTER 1
CHAPTER 2

CONTENTS AT A GLANCE

The Nature of Scoftware 1
Software Engineering 14

Human Aspects of Software Engineering 87

Recuirements Modsling: ScenarcBossd Methads 166
Reouirements Modsling: ClossBosed Methads 184
Requirements Modsling: Behavior, Patierns, and Web/Mobile Apps 202

PART ONE THE SOFTWARE PROCESS 2o
CHAPTER 3 Softwore Process Sructure 30
CHAPTER 4 Procsss Mozels 40
CHAPTER 5 Agile Development 06
CHAPTER 6

PART TWO MODELING 103
CHAPTER 7 Frinciples Thot Guige Proctice 104
CHAPTER 8 Understanding Requirements 131
CHAPTER 9
CHAPTER 10
CHAPTER 11
CHAPTER 12 Design Concepts 224
CHAPTER 13 Architectural Design 252
CHAPTER 14 Componentlevel Design 2835
CHAPTER 15 User Inerfoce Design 317
CHAPTER 16 FPottem-Bossd Design 347
CHAPTER 17 WebApp Design 371
CHAPTER 18 MobilzApp Design 391

PART THREE QUALITY MANAGEMENT :1:

CHAPTER 19
CHAPTER 20
CHAPTER 21
CHAPTER 22
CHAPTER 23
CHAPTER 24
CHAPTER 25
CHAPTER 26

Quality Concepts 412

Review Techniguss 431

Sobware Quality Assurance 448
Sofwars Testing Strotegies 400

Testing Conventional Applications 496
Testing ObjectOrienizd Applications 523
Testing Web Applications 540

Testing MabileApps 567

vii

viii CONTENTS AT A GLANCE

CHAPTER 27 Security Engineering 584

CHAPTER 28 Formal Modeling ond Verification 601
CHAPTER 29 Software Configuration Management 623
CHAPTER 30 Product Metrics 653

PART FOUR MANAGING SOFTWARE PROJECTS &z

CHAPTER 31 Project Maonogement Concepts 684
CHAPTER 32 Procsss and Project Mefrics 703
CHAPTER 33 Estimation for Software Projects 727
CHAPTER 34 Project Scheauling 754

CHAPTER 35 Risk Monagsment 777

CHAPTER 36 Maintenance and Reengineering 795

PART FIVE ADVANCED TOPICS =17

CHAPTER 37 Schware Process Improvement 818
CHAPTER 38 Emerging Trends in Software Enginesring 839
CHAPTER 39 Concluding Comments 860

APPENDIX 1 An Infroduction o UML 869
APPENDIX 2 ObjectOrient=d Concepis 891
APPENDIX 3 Formal Methods 899
REFERENCES 909

INDEX @933

TABLE OF CONTENTS

PART ONE

Preface xxvii

CHAPTER 1 THE NATURE OF SOFTWARE 1

1.1 The Nature of Software 3
1.1.1 Defining Software 4
1.1.2 Sottware Application Domains 6
1.1.3 l=gocy Software 7

1.2 The Chonging Nature of Softwore 9
1.2.1 Weblpps @
1.2.2 Mabile Applications @
1.2.3 Cloud Compuiing 10
1.2.4 Product line Schware 11

1.3 Summary 11

PRORLEMS AND PONTS TO PONDER. 12

FURTHER READINGS AND INFORMATION SOuUCEs 12

CHAPTER 2 SOFTWARE ENGINEERING 14

2.1 Defining the Discipline 15

2.2 The Software Process 16
2.2.1 The Process Framework 17
222 Umbrello Activiies 18
2.2.3 Frocess Adopation 18

2.3 Software Engineering Proctice 19
2.3.1 The Essence of Practice 19
2.3.2 General Principles 21

24 Software Development Myths 23

2.5 How k All Stars 26

2.6 Summary 27

PROBIEMS AND POINTS TO PONDER 27

FURTHER RZADINGS AND INFORMATION SOURCES 27

THE SOFTWARE PROCESS 29

CHAPTER 3 SOFTWARE PROCESS STRUCTURE 30

3.1 A Generic Process Modsl 31

3.2 Defining o Fromework Activity 32

3.3 Identifying o Task Set 34

3.4 Procsss Poterns 335

3.5 Frocsss Asssssmentand Improvemsnt 37
3.6 Summary 38

PROBLEMS AND POINTS TO PONDER - 38

FUAT=ER READNGS AND NFORVATION 30U3CEs 39

TABLE OF CONTENTS

CHAPTER 4 PROCESS MODELS 40

4.1 Frescriptive Procsss Mossls 4]
411 The Waterlall Model 41
412 Incremental Process Models 43
413 Evolutionary Process Models 45
414 Concurent Models 49
41.5 A Final Word on Evolutionary Processes 51
42 Speciclizes Procsss Modsls 52
421 Companent-Bosed Development 53
4272 The Formal Methods Mod=l 53
423 Aspec+Orisnizd Safwars Development 54
43 The Unified Process 33
43.1 A Brief History 36
432 Phases of the Unified Process 36
4.4 Personal and Team Process Modzels 59
44 Personal Software Process 59
4472 Team Sohtwars Process 60
45 Frocess Technology &1
4.6 Product ond Process 62
47 Summary 64
SO2EVE AND FONTE TO 2ONDER 04
FURT=ER RZADINGS AND NFORVATION 30U3Czs 65

CHAPTER 5 AGILE DEVELOPMENT 66

5.1 What Is Agilitye 68

Agility and the Cast of Change 68

What Is an Agile Process? 69

5.3.1 Agility Principles 70

5.3.2 The Palitics of Agile Development 71
54 Extreme Progromming 72

pl .LJI
[P OS]

54.1 The XP Process 72
542 Industrial XP 75
5.5 Other Agile Process Models 77
5.5.1 Scrum 78
552 Dynamic Systems Development Method - 79
553 Agile Madeling 80
554 Agile Unified Prozess 82
5.6 A Tool St for the Agils Procsss 83
57 Summary 84
BO2EVE AND FONTE TO 2ONDER B3
FURT=ER RZADINGS AND NFORVATION 30U%CEs B85

CHAPTER 6 HUMAN ASPECTS OF SOFTWARE ENGINEERING

87

6.1 Characteristics of o Sottware Engineer 88
6.2 The Psychology of Software Engineering 89
6.3 The Software Team Q0
6.4 =om Struciurss 92
6.5 Agle Teoms @3
6. 5] The Generic Agile Tzam 93
6.5.2 The XP Team 94

TABLE OF CONTENTS

6.6 The Impoct of Social Media 95

6.7 Sottware Engineering Using the Cloud 97
6.8 Collaboration Tools 98

6.9 Global Teams 99

6.10 Summary 100

PROBIEMS AND PONTS TO PONDz 101

FURTER RZADINGS AND NFORMATON S0urczs 102

xi

PART TWO MODELING 103
CHAPTER 7 PRINCIPLES THAT GUIDE PRACTICE 104
7.1 Sottware Engineering Knowledge 105
7.2 Cars Principles 106
7.2.1 Principles Thot Guide Process 106
7.2.2 Frinciples That Guids Proctice 107
7.3 Principles That Guide Each Fromewark Activity 109
7.3.1 Communication Principles 110
7.3.2 Flonning Principles 112
7.3.3 Maodeling Principles 114
7.3.4 Construction Principles 121
7.3.5 Deployment Principles 125
7.4 Work Proctices 126
7.5 Summary 127
PROBIEMS AND POINTS TO PONDR 128
FURTHER READINGS AND INFORVATION S0WRCEs 129
CHAPTER 8 UNDERSTANDING REQUIREMENTS 131
8.1 Requirements Enginsering 132
8.2 Establishing the Groundwork 138
8.2.1 ldentifying Stokshalders 139
8.2.2 Recognizing Multiple Viewpoints 139
8.2.3 Working toward Colloboration 140
8.24 Asking the First Quesfons 140
8.2.5 Nonfunctional Requiremens 141
8.2.6 Troceability 142
8.3 Eliciting Requirements 142
8.3.1 Colloborative Requirements Gathering 143
8.3.2 Quality Function Deployment 146
8.3.3 Usage Scenarios 146
8.3.4 Elicitation Work Products 147
8.3.5 Agile Requirements Elicimtion 143
8.3.6 Service-Oriented Methods 148
8.4 Developing Uss Coses 149
8.5 Building the Analysis Modsl 154
8.5.1 Elemens of the Analysiz Model 154
8.5.2 Analysis Poterns 157
8.5.3 Agile Requirements Enginsering 158
854 Requiremenis for S=lFAdopfve Systems 158
8.6 Negotiating Requirements 159

xii

TABLE OF CONTENTS

8.7 Requirements Monitoring 160
8.8 Validating Requirements 161

29 Avoiding Common Mistokes 162
8.10 Summary 162

ROBLEMS AND POINTS TO PONDER 163

FURTHER STADINGS AND OTHER INFORMATION S0uUCEs 164

CHAPTER 9 REQUIREMENTS MODELING: SCENARIO-BASED
METHODS 166

21 Requirsments Analysis 167

211 Overall Objectives and Philosophy 168
9.1.2 Analysis Rules of Thumb 169
2.1.3 Domain Analysis 170

214 Requirements Modeling Approoches 171
2z cenarioBased Modeling 173

2.2 Creatfing @ Preliminary Use Case 173
9.22 Refining o Preliminory Use Case 176
9.23 Wiifing @ Formal Use Case 177

9.3 UML Madsls That Supplement the Uss Case 179
2.3 Developing an Activity Diagram 180

9.3.2 Swimlane Diogroms 181

Q4 Summary 182
PROBIEMS AND POINTS TO PONDER. 182

"
=~ |
mon

URTHER 22ADINGS AND INFORMATION SOuces 183

CHAPTER 10 REQUIREMENTS MODELING: CLASS-BASED METHODS

184

10,1 ldentifying Analysis Closses 185

10.2 Specilying Afributes 188

10.3 Defining Operations 189

10.4 ClossResponsibility-Colloborator Modeling 192
10.5 Associotions and Depsnasnciss 198

10.6 Anclysis Packagss 199

10.7 Summory 200

PRO21EMS AND PONTS TO PONDER 201

% 2EADINGS AND INFORWVATION soucss 201

CHAPTER 11 REQUIREMENTS MODELING: BEHAVIOR, PATTERNS,
AND WEB/MOBILE APPS 202

11.1 Creafing o Behovioral Model 203

1. ldentifying Events with the Uss Cos= 203
11. State Representations 204

11. Pattems for Requirements Modeling 207

I aora

11.4.1 Discavering Analysis Paterns 208
11.4.2 A Reguirements Pottern Example: ActuatorSensar 209
11

n

Requirements Modeling for Web and Mobile Apps 213
11.5.1 How Much Analysis Is Enough? 214

11.5.2 Requirements Modeling Input 214
11.5.3 Requirements Modeling Output 215
11.5.4 Confent Model 216

TABLE OF CONTENTS

11.6

11.5.5 Inzroction Madsl for Webond Mabilz Apps 217
11.5.6 Functional Model 218

11.5.7 Corfiguraiion Models for WebApps 219

11.5.8 Navigation Modeling 220

Summary 221

- ~ . - - blyly]
PROBIEMS AND POINTS TO PONDR £ZZ

-
FURTHER READINGS AND INFORVMATION SOURCES 2242

CHAPTER 12 DESIGN CONCEPTS 224

12.5
~,

An s =
- E

S Sy

Design within the Context of Software Enginsering 225
The Design Procsss 228

12.2.1 Software Quality Guidelines and Atributes 228
12.2.2 The Evolufion of Sottware Design 230

Design Concepts 231

12.3.1 Abstraction 232

12.3.2 Architecture 232

12.3.3 Pottermz 233

12.3.4 Separation of Concerns 234

12.3.5 Modularity 234

12.3.6 Information Hiding 235

12.3.7 Functional Independence 236

12.3.8 Refnement 237

12.39 Aspects 237

12.3.10 Refoctoring 238

12.3.11 ObjectOrient=d Design Concepts 238
12.3.12 Design Closses 239

12.3.13 Depesndency Inversion 241

12.3.14 Design for Test 242

The Design Mooel 243

12.4.1 Doto Design Elemens 244

12.4.2 Architectural Design Elements 244
12.4.3 Inierfocs Design Elements 243

12.44 Companentlevel Design Elemens 247

12.45 Deploymentlevel Design Elements 243
Summary 249

MS AND POINTS TO PONDER 250

- A A= s . B4 4 AT I a1 Ly X
FURTHER 2EADINGS AND INFOMMATION SOURCES 2351

CHAPTER 13 ARCHITECTURAL DESIGN 252

13.1

13.2
13.3

134

Sottware Archiecture 253

13.1.1 What |s Architecture? 253
13.1.2 Why Is Archiecture Importante 254
13.1.3 Architectural Descriptions 255

13.1.4 Architectural Decisions 236

Architectural Genres 257

Architectural Styles 258

13.3.1 A Brief Taxonomy of Architectural Styles 258
13.3.2 Architectural Patierns 263

13.3.3 Organization and Refinement 263
Architectural Considerations 264

Xiv

TABLE OF CONTENTS

13.5 Architectural Decisions 266
13.6 Architectural Design 267

13.6.1 Representing the System in Coniext 267
13.6.2 Defining Archetypes 249

13.6.3 Refining the Architecture into Components 270
13.6.4 Describing Instantiations of the Sysem 272

13.6.5 Archiectural Design for Web Apps 273
13.6.6 Archisctural Design for Mabile Apps 274

13.7 Asssssing Alernative Architectural Designs 274
13.7.1 Archiectural Description longuoges 276
13.7.2 Archiectural Reviews 277

13.8 lzssons lzormed 278

13.9 Pattem-bassd Architecture Review 278

13.10 Architecture Conformance Checking 279

13.11 Agility ond Architecture 280

13.12 Summary 282

PROBLEMS AND POINTS TO PONDER - 28

FURTHER 2ZADINGS AND INFORWATION SOUCEs 283

(]

CHAPTER 14 COMPONENT-LEVEL DESIGN 285

14.1 Whatls o Componene 286
14.1.1 An ObjectOriented View 286
14.1.2 The Tradifional View 288
14.1.3 A ProcessRelosd View 291
14.2 Designing Closs-Bossd Companents 291

14.2.1 Bosic Design Principles 292
14.2.2 Componentlevel Design Guidelines 295
14.2.3 Cohesion 296

14.2.4 Coupling 298
14.3 Conducting Component-level Design 299
144 Compansntlevel Design for WebApps 3035
14.4.7 Content Design of he Component level 306
14.4.2 Functional Design ot the Compaonent level 300
145 Compansntlevel Design for Mabile Apps 306
14.6 Designing Tradifional Components 307
14.7 Comporent-Based Development 308
14.7.1 Domain Enginesring 308
14.7.2 Component Qualificafion, Adopiation, and Compasition
14.7.3 Architectural Mismatch 311
147.4 Anclysis ond Design for Reuss 312
14.7.5 Clossifying and Retrieving Companents 312
148 Summary 313
PROBIEMS AND POINTS TO PONDER 3135

FURTHER 2EADINGS AND INFOUVATION S0uUcss 315

CHAPTER 15 USER INTERFACE DESIGN 317

309

15,1 The Golden Rulzs 318

15.1.1 Ploce the User in Control 318
1.2 Reduzes the Userz Memary lood 319
. Moke the Interfoce Consistent 321

n
L0

1
1

n

TABLE OF CONTENTS

15.2 User Interfocs Analysis ond Design 322

15.2.1 Interfoce Analysis ond Design Models 322
15.2.2 The Procsss 323
15.3 Interfoce Analysis 323
15.3.1 User Anclysiz 323
15.3.2 Tosk Analysis and Modeling 326
15.3.3 Analysis of Disploy Content 331
15.3.4 Analysis of he Work Environment 331

154 Interfocs Design Steps 332
15.4.1 Applying Interface Design Steps 332
15.4.2 User Inerfacs Design Poterns 334
15.4.3 Design Issues 335

15.5 WebhApp ond Mabile Interfacs Design 337

15.5.1 Interfoce Design Principles ond Guidslines 337
15.5.2 Interfoce Design Workflow for Web and Mcabile Apps 341
15.6 DesignEvaluotion 342
157 Summary 344
PROBIEMS AND POINTS TO PONDR 345
FURTHER READINGS AND INFORVATION SOURCES 340

CHAPTER 16 PATTERN-BASED DESIGN 347

16.1 Design Patterns 348
16.1.1 Kinds of Patterns 349
16.1.2 Fromeworks 3351
16.1.3 Describing o Pattern 352
16.1.4 Pattemn Longuoges and Repositories 353
16.2 PatiernBased Software Design 354
16.2.1 Pottem-Bosed Design in Context 354
16.2.2 Thinking in Patterns 354
16.2.3 Design Tasks 356
16.2.4 Building o PattermOrganizing Table 3358
16.2.5 Common Design Mistokes 359
16.3 Architectural Potterns 359
164 Componentlevel Design Paterns 360
16.5 User Interfoce Design Pattems 362
166 WebApp Design Pattems 3064
16.6.1 Design Focus 365
16.6.2 Design Granularity 365
16.7 Potierns for Mobile Apps 366
16.8 Summary 367
PROBIEMS AND BONTS TO 2ONDER 308

FURTHER 2EADINGS AND INFOMMATION SOuRCEs 369

CHAPTER 17 WEBAPP DESIGN 371

17.1 WebApp Design Quality 372

17.2 DesignGoals 374

17.3 ADesign Pyramid for WebApps 375
174 Webhpp Interfoze Design 376

xvi

PART THREE

TABLE OF CONTENTS

17.5 Aesthefc Design 377

17.5.1 loyout suss 378

17.5.2 Grophic Design Issues 378
176 Content Design 379

17.6.1 Content Objects 379

17.6.2 Content Design Issuss 380
17.7 Architecture Design 381

17.7.1 Content Architecture 381

17.7.2 WebApp Archimcire 384

17.8 Navigation Design 385
17.8.1 Navigation Semantics 3835
17.8.2 Navigation Syntox 387
17.9 Comporentlevel Design 387
17.10 Summory 388
S AND PONTS TO PONDER 3E9
FURTHER 2ZADINGS AND INFORWATION 30usCss 389

CHAPTER 18 MOBILEAPP DESIGN 391

18.1 The Challengss 392

18.1.1 Development Considerations 392
18.1.2 Technical Considerations 393

18.2 Developing MobileApps 395
18.2.1 MabileApp Quality 397
18.2.2 User Interfoce Design 398
18.2.3 ContextAware Apps 399
18.2.4 l=szons Leorned 400

18.3 MobileApp Design—Best Practices 401

18.4 Mobility Environments 403

18.5 The Cloud 405

18.6 The Applicability of Conventional Software Engineering 407

18.7 Summary 408

M8 AND PONTS TO 2onDzr - 409

-
ADINGS AND INFORMATION Sources 409

QUALITY MANAGEMENT 411

CHAPTER 19 QUALITY CONCEPTS 412

19.1 Whatls Quality?2 413
19.2 Software Quadlity 414

19.2.1 Gorvin's Quality Dimensions 415

19.2.2 McCalls Quality Foctors 416

1923 ISO 9126 Quality Fociors 418

19.2.4 Torgeted Quality Foctors 418

19.2.5 The Transition to o Quantitative View 420

19.3 The Software Quality Dilemma 420
19.3.1 "Good Enough” Software 421
19.3.2 The Cost of Quality 422
19.3.3 Risks 424
19.2.4 Negligencs ond Liabiliyy 425

TABLE OF CONTENTS

19.3.5 Quality and Security 425

19.3.6 The Impact of Management Actions 426
194 Achieving Software Quality 427

1941 Software Engineering Methods 427

1942 Froject Manogsment Technigues 427
19.4.3 Quality Contral 427

19.4.4 Quality Assurance 428
19.5 Summary 428
QRIS AND PONTS TO PONDER 429

oo - " - o~ - -)
2EADINGS AND INFORVATION SOURCEs 429

CHAPTER 20 REVIEW TECHNIQUES 431

20.1 Cost Impoct of Sottware Defects 432
H‘:l.l-\

2 Defect Amplification and Removal 433
203 FReview Metrcs ond TheirUse 435

20.3.1 Analyzing Mefrics 435
20.3.2 CostEffectiveness of Reviews 436

20.4 Reviews: A Formality Spectrum 438
20.5 Informal Reviews 439
206 Formal Technical Reviews 441
20.6.1 The Review Mesting 441
20.6.2 Review Reporting and Record Keeping 442
20.6.3 Review Guidslines 442
2004 Somple-Driven Reviews 444
20.7 PosthMortem Evoluafions 445
208 Summary 446
PROBIEMS AND SONTS TO 2ONDER 445

FURTHER 2EADINGS AND INFOMMATION SOURCEs 447

CHAPTER 21 SOFTWARE QUALITY ASSURANCE

448

N Bockground Issuss 449

- |

L

1
1.2 Elements of Schware Quality Assurance 43¢
1.3 SQA Processes ond Product Chaorocteristics 452
1.4 SQA Tosks, Goals, and Metrics 452
21.4.1 SQA Tosks 453
21.42 Gools, Attributes, ond Merics 454
1.5 Formol Approaches to SQA 456
21.6 Statisfical Software Quality Assurance 456
21.6.1 A Generic Example 457

[I SN N I B

21.6.2 Six Sigma for Software Engineering 458
21.7 Sotware Reliability 459
21.7.1 Measures of Reliability and Availability 459
21.7.2 Software Safety 460
8 The SO 9000 Quality Stondards 461
9 Th=SQAPlon 4583
10 Summary 463
BIEMS AND POINTS TO PONDR 464

.
FURTHER READINGS AND INFORVATION SOURCes 464

Xviii

TABLE OF CONTENTS

CHAPTER 22 SOFTWARE TESTING STRATEGIES 466

-
22.1

[SS]
(S]
(]

o]
o]
I

[S S R S
[S N R S
O n

]
[SN]
o0

o]
[SN]
0

22.10

A Strotegic Approach to Softwars Testing 466

22.1.1 Verificafion and Validation 468
22.1.2 Organizing for Sofrware Testing 468

22.1.3 Software Testing Strategy—The Big Picture 469
22.1.4 Ciiterio for Complefion of Tesing 472
Strategic Issues 472

Test Strotegies for Conventional Sofware 473

22.3.1 Unit Testing 473

22.3.2 Integration Testing 4735

Test Srategies for ObjectOriented Software 481

4.1 Unit Testing in the OO Context 481

472 Integration Testing in the OO Context 481
Test Srategies for Weblpps 482

Test Srategies for MaobilsApps 483

Validation Testing 483

8]

22.7.1 ValidationTest Criteria 484
22.7.2 Configuration Review 484
22.7.3 Alpho aond Beta Testing 484
System Testing 486

22.8.1 Recovery Tesing 4806
22.8.2 Security Testing 486
228.3 Stress Testing 487

2284 Performance Testing 487
22.8.5 Deployment Testing 487
The Ar of Debugging 488

2291 The Debugging Procsss 438
229.2 Psychological Considerations 490
229.3 Debugging Strategies 491
2294 Correcting the Error 492

Summary 493

PRORENE AND PONTE TO 2ONDER 493

FURTHER STADINGS AND INFORWATION SOURCEs 494

CHAPTER 23 TESTING CONVENTIONAL APPLICATIONS

496

23.1
23.2
23.3
234

Software Testing Fundomentals 497

In=rnol and External Views of Testing 499
White-Box Testing 500

Baosis Path Testing 500

23.4.1 Flow Graph Notation 500
2342 Independent Program Paths 502
23.4.3 Deriving Test Coses 504
2344 Groph Matrices 506

Contral Structure Testing 507

BlockBox Tesfing 509

23.6.1 GrophBosed Testing Methoss 509
23.6.2 Equivalence Partitioning 511
23.6.3 Boundary Vobe Analysis 512
23.6.4 Orthogonal Array Testing 513

TABLE OF CONTENTS

237 MNodelBossdTesing 516

23.8 Testing Documeniotion and Help Facilifes 516
239 Testingfor RealTime Systems 517

23.10 Paterns for Software Testing 519

23.11 Summary 520

PROBIEMS AND POINTS TO PONDR 521

- - - - - - - 4y]
FURTHER 2EADINGS AND INFORVATION SOURCEs 521

CHAPTER 24 TESTING OBJECT-ORIENTED APPLICATIONS 523

241 Broodsning the View of Testing 524
242 Testing OOA ond OOD Models 525

24.2.1 Carscinzss of OOA ons OOD Mossls 525
2422 Corsistency of ObjzctOrienizd Models 524
243 ObjectOriented Testing Strotegies 528
24.3.1 Unit Testing in the OO Context 528
24.3.2 Int=grafion Testing in the OO Confext 529
24.33 Volidation Testing in an OO Conext 529
244 QObjectOrientzd Testing Methods 529
24.41 The TestCas= Design Implications of OO Concepts 530
24 472 Applicability of Conventional TestCase Design Methods 531

24 .43 FoultBased Testing 531
24 4.4 ScenorioBosed Test Design 532
245 Testing Methods Applicable of he Class level 532

2451 Random Testing for OO Closses 532

24.5.2 Fartition Testing ot he Class level 533
246 Intercloss TestCaose Design 534

24.6.1 Muliple Closs Tesfing 534

24.6.2 Tests Derived from Behavior Models 536
247 Summary 537

e
i

R0BIEMS AND POINTS TO PONDER 538

FURTHER 2EADINGS AND INFOMMATION SOuRCss 538

CHAPTER 25 TESTING WEB APPLICATIONS 540

(

25.1 sting Concepts for WebApps 541

25.1.1 Dimensions of Quality 541
25.1.2 Errors within @ WebApp Environment 542
25.1.3 Testing Strategy 343
25.1.4 Test Flonning 543

252 TheTesting Process—An Overvisw 544

23.3 ContentTesfing 3435
25.3.1 Content Testing Objectives 545
25.3.2 Dotobass Testing 547

254 User Interfocs Testing 549
25.4.1 Int=rfoce Testing Strategy 549
25.42 Testing Interfocs Mechanisms 530
25.43 Testing Interfoce Semontics 552
25.44 Usability Tests 552
25.4.5 Compatibility Tess 554

255 Componentlevel Testing 555

XX

TABLE OF CONTENTS

25.6 Navigation Testing 556
25.6.1 Testing Navigafion Syntax 5356
25.6.2 Testing Navigafion Semanfics 556
25.7 Corfliguration Testing 558
25.7.1 ServerSide lsuss 538
25.7.2 Clien+Side lssues 5359
25.8 Security Testing 559
259 Performonce Testing 540
2591 Performanze Testing Objectives 561

2592 lood Testing 562
259.3 Stress Testing 562
25.10 Summary 563
OBLEMS AND POINTS TO PONDER - 564
% PEADINGS AND INFORMATION SOURCES 565

CHAPTER 26 TESTING MOBILEAPPS 567

26.1 =sting Guidslines 568
20.2 The Tesfing Strotegies 569
26.2.1 Are Conventional Approoches Applicable? 570
26.2.2 The Nezd for Automation 571
26.2.3 Building o Test Matrix 572
2024 Stress Testing 573
26.2.5 Testing in @ Production Environment 573
26.3 Considering the Spectrum of User Interaction 574
26.3.1 Gesture Testing 575
26.3.2 ocice Input and Recognition 576
26.3.3 Virtual Key Board Input 577
26.3.4 Alerts and Extroordinary Conditions 577
264 Test Across Borders 578

26.5 ReolTime Testing lssuss 578
26.6 Testing Tools ond Environments 579
26.7 Summary 581

PROBIEMS AND POINTS TO PONDER 582

n
o0
I~

FURTHER READINGS AND INFORWATION SOURCES

CHAPTER 27 SECURITY ENGINEERING 584

27.1 Anaclyzing Security Requirements 585
27.2 Security and Privacy in on Online Workd 586

27.2.1 Sociol Media 587
27.2.2 Mobile Applications 587
27.2.3 Cloud Computing 587
27.2.4 The Internst of Things 588
27.3 Security Enginssring Analysis 583
27.3.1 Security Requirsment Elicitation 589
27.3.2 Security Moseling 590
27.3.3 Measures Design 591
27.3.4 Correcinzss Checks 397
27 4 Security Assuronce 592
27 .41 The Security Assuroncs Procsss 592

27.4.2 Organization and Maonagement 593

TABLE OF CONTENTS

27.5
27.6
277
27.8

Security Risk Analysis 594

The Role of Conventional Software Engineering Activities 595
Verification of Trustworthy Systems 597

Summary 599

PROBIEMS AND POINTS TO SONDER 599

FURTHER 2EADINGS AND INFOMMATION Sousces 600

CHAPTER 28 FORMAL MODELING AND VERIFICATION 601
28.1 The Cleonroom Strategy 602
28.2 Functional Specification 604
28.2.1 BlockBox Specification 605
28.2.2 StoteBox Specification 606
28.2.3 ClearBox Specification 607
28.3 Cleonroom Design 607
28.3.1 Design Refinement 608
28.3.2 Design Verification 608
28.4 Cleonroom Testing 610
28.4.1 Statistical Use Testing 610
28.4.2 Certification 612
28.5 Rethinking Formal Methods 612
28.6 Formal Methods Concepts 615
28.7 Alternative Arguments 618
28.8 Summary 619

PROBIEMS AND POINTS TO PONDE: 620

3 =! = 2 3 AT /3 Ly]
FURTHER 2EADINGS AND INFOMMATION S0uRCEs 621

CHAPTER 29 SOFTWARE CONFIGURATION MANAGEMENT

623

291

I
0
i

Sctware Configuration Manogement 624
29.1.1 An SCM Scenario 625

29.1.2 Elemenss of o Corfiguration Manogement Sysiem 626
29.1.3 Boselines 626

29.1.4 Software Contiguration ltems 628

2915 Manogsment of Dependenciss ond Chongss 628
The SCM Repasitory 630

29.2.1 General Feotures and Conent 630

2922 SCM Featrss 031

The SCM Process 632

29.31 Identification of Objects in the Software Configuration 633
29.3.2 Version Contral 634

29.3.3 Change Contral 635

29.34 Impoct Management 638

2935 Corfigurafion Audit 639

29.3.6 Status Reporting 639

Contiguration Manogement for Web and MobileApps 640

2947 Dominant Issuss 641
2942 Cortigurafion Objects 642
290.43 Content Management 643
2044 Change Manogement 646
2945 Version Control 648

29.46 Auditing and Reporting 649

xxii TABLE OF CONTENTS

295 Summary 630
ROBIEMS AND POINTS TO PONDER. 65 1

) BEADINGS AND INFORVATION 30uUCss 631

CHAPTER 30 PRODUCT METRICS 653

30.1 A Fromework for Product Metrics 654

30.1.1 Measures, Metrics, and Indicators 654
30.1.2 The Challenge of Product Metrics 655
30.1.3 Meaosursment Principles 856

30.1.4 GootQOrientzd Sobware Meosurement 636

30.1.5 The Attributes of Effsctive Software Metrics 657
30.2 Metrics for the Requiremens Modsl 639

30.2.1 FunctiorBos=d Metrics 639
0.2.2 Metrics for Specification Quality 662
30.3 Metrics for the Design Model 663
30.3.1 Archizctural Design Metrics 663
30.3.2 Merics for ObjectOriznt=d Design 660
30.3.3 Closs-Oriented Mefrics—The CK Metrics Suite 667

30.3.4 ClassOrientza Merics—The MOOD Metrics Suite 670
30.3.5 OO Metrics Proposed by lorenz and Kidd 671
30.3.6 Componentlevel Design Merrics 671
30.3.7 Opertion-Oriented Metrics 671
30.3.8 User Interfoce Design Metrics 672
30.4 Design Metrics for Web and Mabile Apps 672
30.5 Metrics for Source Code 675
30.6 Metrics for Testing 676
30.6.1 Halsteod Metrics Applied to Testing 676
30.6.2 Merics for ObjectOriented Testing 677
7 Metrics for Maintenance 678
8 Summory 679
BLEMS AND POINTS TO PONDER 679

A A Am o ” -] - -, - < ‘l"‘
FURTHER READINGS AND INFORMATION 30uscss 080

PART FOUR MANAGING SOFTWARE PROJECTS 683

CHAPTER 31 PROJECT MANAGEMENT CONCEPTS 684

31.1 The Monagement Spectum 685
31.1.1 The People 483
31.1.2 The Product 686
31.1.3 The Procsss 086
31.1.4 The Project 686
31.2 People 687

31.2.1 The Stoksholders 687
31.2.2 Team l=adsrs 688
31.2.3 The Schtware Team 689

31.2.4 Agile Teoms 691

31.2.5 Coordination and Communication Issuss 692
31.3 The Product 693

31.3.1 Schwars Scops 694

31.3.2 Problem Decompaesition 694

TABLE OF CONTENTS

314

The Process 694

31.4.1 Melding the Product and the Process 695
31.42 Process Decomposition 696

The Projsct 697

The W*HH Principle 698
Critical Proztices 699
Summary 700

AND PONTS TO PONDER2 700

- = - - M
% READINGS AND INFOMATION Soweess 701

CHAPTER 32 PROCESS AND PROJECT METRICS 703

32.1

SRS B N I |
SO e

=
o

S

J
L.

5]
=5 L
)
moin

Metrics in the Procsss and Project Domains 704

32.1.1 Procsss Metrics ond Softwars Procsss Improvement 7
32.1.2 Project Metrics 707

Software Measurement 708

32.2.1 Size-Orientzd Metics 709

32.2.2 Function-Oriented Metrics 710

32.2.3 Reconciling LOC and FP Metics 711
32.24 ObiectOrientzd Metrics 713

32.2.5 Use Cas=-Oriented Mefics 714
3226 WebApp Froject Merics 714

Metrics for Software Qudlity 716

32.3.1 Measuring Quality 717

32.3.2 Defect Removal Efficiency 718
Integrating Metrics within the Software Process 719
32.4.1 Arguments for Software Metrics 720
32,42 Establishing o Baseline 720

32.4.3 Metrics Colleciion, Computation, and Evaluation 721

Metrics for Small Organizations 721
AM=s

Establishing o Software Metrics Program 722
Summary 724

LI5S AND SOINTS TO PONDERR 724

.
% READINGS AND INFOUVATION SOWRCEs 725

CHAPTER 33 ESTIMATION FOR SOFTWARE PROJECTS

727

33.1
33.2
33.3
334

33.5
33.6

Observations on Estimation 728
The Projsct Flonning Procsss 729
Sottware Scope and Feasibility 730
Fezourcez 731

33.4.1 Humaon Resources 731

33.4.2 Reusable Software Resources 732
33.43 Environmental Resources 732

Sottware Project Estimation 733

Decomposition Techniques 734

33.6.1 Software Sizing 734

33.6.2 Problem-Bas=ed Estimation 733

33.6.3 An Exomple of LOC-Based Esfimation 736
33.64 An Exomple of FPBased Estimafion 738
33.6.5 ProcessBassd Estimation 739

33.6.6 An Exomple of Process-Based Estimation 740
33.6.7 Estimation with Use Cases 740

XXiv

TABLE OF CONTENTS

33.7

33.8
339

33.10

33.11

33.6.8 An Example of Estimafion Using Use Case Poinss
33.6.9 Reconciling Estimates 742

Empirical Estimotion Models 743

33.7.1 The Structure of Esimation Models 744
33.7.2 The COCOMO Il Model 744

33.7.3 The Sofware Equation 744

Estimation for ObjectOriented Projects 746
Specialized Esfimation Techniques 740

33.9.1 Esimation for Agile Develepment 746
33.9.2 Estimation for WebApp Projects 747
The Maks/Buy Decision 742

33.10.1 Creatinga Decision Tree 749
33.10.2 Outsourcing 730

Summary 752

PROBLEMS AND POINTS TO PONDER 7572

- A

FURTHER 2EADINGS AND INFOUVATION S0UCEs 753

CHAPTER 34 PROJECT SCHEDULING 754

34.1
34.2

34.3

344

3435

34.6
34.7

Baosic Concepts 7355
Project Scheduling 757
34.2.1 Basic Principles 758

3422 The Relationship betwesn People and Effart 759

34.2.3 Effort Distribution 760

Defining o Task Set for the Softwars Project 701
34.3.1 A Tosk Set Example 762

34.3.2 Refinement of Major Tosks 763

Defining o Tosk Network 764

Scheduling 765

34.5.1 Timeline Chorts 766

3452 Tracking the Schedule 767

34.5.3 Trocking Progress for an OO Project 768

34.5.4 Scheduling for WebApp and Mabile Projects 769

Eomes Vaolus Analysis 772
Summary 774

POBIEMS AND POINTS TO PONDER 774

A oa

FURTHER READINGS AND INFOUVATION S0URCEs 776

CHAPTER 35 RISK MANAGEMENT 777

35.1
35.
33.

(SN]

)
n

[s |
tn tn
[SUREN I S W

[N}
n

Reoctive versus Prooctive Risk Strogiss 778
Software Risks 778

Risk Id=ntification 780

35.3.1 Assessing Overall Projsct Risk 781
35.3.2 Risk Components and Drivers 782
Risk Projection 782

3541 Developing o Risk Table 783
35.4.2 Assessing Risk Impoct 785

Risk Refinement 787

Risk Mitigation, Monitoring, and Manogement 788
The RMMM Plon 790

Summary 792

PART FIVE

TABLE OF CONTENTS

.- ~ - - ‘oWl
PROBIEMS AND POINTS TO SONDER 792

FURTHER 22ADINGS AND INFOMMATION SOuRCss 793

CHAPTER 36 MAINTENANCE AND REENGINEERING 795

36.1 Software Maintsnance 796
36.2 Scoftwaore Supporiability 798
36.3 Reenginesring 798
36.4 Business Process Reenginesring 799
36.4.1 Busiresz Procsssss 757
36.42 A BPR Mod=l 800
365 Softwors Resnginesing 802
36.5.1 A Sofbware Reenginssring Procsss Modsl 802
36.5.2 Softwars Resnginssring Activifies 803
36.6 Reverse Engineering 8035
36.6.1 Reverse Engineering to Understond Data 807
36.6.2 Reverse Engineering to Understand Processing 807
36.6.3 Reverse Enginsering User Intedozes 808
36.7 Restructuring 809
36.7.1 Code Restructuring 809
36.7.2 Dofo Restructuring 810
36.8 Forward Enginesring 811
36.8.1 Forward Engineering for ClientServer Architectures 812
36.8.2 Forward Enginsering for ObjectOriented Architeciures 813
369 TheEconomics of Resnginesring 2813
36.10 Summary 814
PROBIEMS AND PONTS TO PONDE2 815

FURTHER READINGS AND INFORMATON S0wRces 816

ADVANCED TOPICS 817

CHAPTER 37 SOFTWARE PROCESS IMPROVEMENT 818

37.1 What Is SPI2 819
37.1.1 Approochss 1o 5P 819
37.1.2 Maturity Models 821
37.1.3 Is SPI for Everyone? 822
37.2 Th=SPl Process 823

37.2.1 Assessment ond Gop Analysis 823
37.22 Education and Training 825
37.2.3 Selection and Jusfification 823
37.24 Installation /Migration 826

37.2.5 Evaluation 827
37.2.6 Risk Manogement for SPI 827
37.3 Th=CMMI 828
374 ThePeople CWW 832
37.5 Other SPl Fomeworks 832
376 SPlReturn on Investment 834
377 Pl Trenos 235
378 Summary 836
PROBIEMS AND SONTS TO 2ONDER 837

FURTHER 2EADINGS AND INFOMMATION SOuRCss 837

XXvVi

TABLE OF CONTENTS

CHAPTER 38 EMERGING TRENDS IN SOFTWARE ENGINEERING

839

38.1 Technology Evolution 840
38.2 Prospects for o Tue Enginesring Discipline 841
38.3 Observing Software Enginesring Trends 842
38.4 Identifying "Soft Trends™ 843
38.4.1 Managing Complexity 845
38.4.2 OperWorld Softwore 846
38.4.3 Emergent Requirements 840
3844 The Tolent Mix 847
38.4.5 Software Building Blocks 847
38.4.6 Changing Perceptions of "Volue”™ 848
3847 Open Source 848
38.5 Techrology Dirsctions 849
38.5.1 Frocsss Trends B49
38.5.2 The Grond Challengs 851
38.5.3 Collaborafive Development 852
38.5.4 Requirements Engineering 8352
38.5.5 MaozetDriven Softwars Development 8353
38.5.6 Postmodsrn Design 854
38.5.7 TestDriven Development 854
38.0 ToclsRelowd Trends 855
38.7 Summary 857
PROBIEMS AND POINTS TO PONDER 857

FURTHER 2EADINGS AND INFOUVATION SOucss 8358

CHAPTER 39 CONCLUDING COMMENTS 860

39.1 The Importance of Software—Revisited 861
39.2 Psopls and the Way They Build Systems 801
39.3 New Modes for Representing Information 862
394 Thelong View 864

39.5 The Softwars Enginesr's Responsibiliny 845
39.6 AfFinol Commentfrom RSP 867

APPENDIX 1 AN INTRODUCTION TO UML 869
APPENDIX 2 OBJECT-ORIENTED CONCEFTS 891
APPENDIX 3 FORMALMETHODS 399

REFERENCES Q09
INDEX 933

When computer software succeeds—when it meets the needs of the people who
use it, when it performs flawlessly over a long period of time, when it is easy
to modify and even easier to use—it can and does change things for the better. But
when software fails—when its users are dissatisfied, when it is error prone, when it
is difficult to change and even harder to use—bad things can and do happen. We all
want to build software that makes things better, avoiding the bad things that lurk in
the shadow of failed efforts. To succeed, we need discipline when software is designed
and built. We need an engineering approach.

It has been almost three and a half decades since the first edition of this book
was written. During that time, sofiware engineering has evolved from an obscure idea
practiced by a relatively small number of zealots to a legitimate engineering disci-
pline. Today, it is recognized as a subject worthy of serious research, conscientious
study. and tumultuous debate. Throughout the industry, software engineer has re-
placed programmer as the job title of preference. Software process models, software
engineering methods, and software tools have been adopted successfully across a
broad spectrum of industry segments.

Although managers and practitioners alike recognize the need for a more disci-
plined approach to software, they continue to debate the manner in which discipline
isto be applied. Many individuals and companies still develop software haphazardly,
even as they build systems to service today’s most advanced technologies. Many pro-
fessionals and students are unaware of modern methods. And as a result, the guality
of the software that we produce suffers, and bad things happen. In addition, debate
and controversy about the true nature ofthe software engineering approach continue.
The status of software engineering is a study in contrasts. Attitudes have changed.
progress has been made, but much remains to be done before the discipline reaches
full maturity.

The eighth edition of Software Engineering: A Practitioner’s Approach is intended
to serve as a guide to a maturing engineering discipline. The eighth edition, like the
seven editions that preceded it. is intended for both students and practitioners, re-
taining its appeal as a guide to the industry professional and a comprehensive intro-
duction to the student at the upper-level undergraduate or first-year graduate level.

The eighth edition is considerably more than a simple update. The book has been
revised and restructured to improve pedagogical flow and emphasize new and im-
portant sofiware engineering processes and practices. In addition, we have further
enhanced the popular “support system” for the book, providing a comprehensive set
of student, instructor. and professional resources to complement the content of the
book. These resources are presented as part of a website (www.mhhe.com/pressman)
specifically designed for Software Engineering: A Practitioner’'s Approach.

The Eighth Edition. The 39 chapters of the eighth edition are organized into five
parts. This organization better compartmentalizes topics and assists instructors who

may not have the time to complete the entire book in one term.
xxvii

Xxviii

PREFACE

Part 1, The Process, presents a variety of different views of software process. consid-
ering all important process models and addressing the debate between prescriptive
and agile process philosophies. Part 2, Modeling, presents analysis and design meth-
ods with an emphasis on object-oriented techniques and UML modeling. Pattemn-
based design and design for Web and mobile applications are also considered. Part 3,
Quality Management, presents the concepts, procedures, techniques, and methods
that enable a software team to assess software quality, review software engineering
work products, conduct SQA procedures, and apply an effective testing strategy and
tactics. In addition, formal modeling and verification methods are also considered.
Part 4 Managing Software Projects, presents topics that are relevant to those who
plan, manage, and control a software development project. Part 5, Advanced Topics,
considers software process improvement and software engineering trends. Continu-
ing in the tradition of past editions, a series of sidebars is used throughout the book to
present the trials and tribulations of a (fictional) software team and to provide supple-
mentary materials about methods and tools that are relevant to chapter topics.

The five-part organization of the eighth edition enables an instructor to “cluster”
topics based on available time and student need. An entire one-term course can be
built around one or more of the five parts. A software engineering survey course
would select chapters from all five parts. A software engineering course that empha-
sizes analysis and design would select topics from Parts 1 and 2. A testing-oriented
software engineering course would select topics from Parts 1 and 3, with a brief foray
into Part 2. A "management course” would stress Parts 1 and 4. By organizing the
eighth edition in this way, we have attempted to provide aninstructor with a number
of teaching options. In every case the content of the eighth edition is complemented
by the following elements ofthe SEPA, 8/e Support System.

Student Resources. A wide variety of student resources includes an extensive on-
line leaming center encompassing chapter-by-chapter study guides, practice quizzes,
problem solutions, and a variety of Web-based resourcesincluding software engineer-
ing checklists, an evolving collection of “tiny tools,” a comprehensive case study, work
product templates, and many other resources. In addition, over 1,000 categorized Web
References allow a student to explore software engineering in greater detail and a
Reference Library with links to more than 500 downloadable papers provides an in-
depth source of advanced software engineering information.

Instructor Resources. A broad array of instructor resources has been developed to
supplement the eighth edition. These include a complete online Instructor’'s Guide
(also downloadable) and supplementary teaching materials including a complete set
of more than 700 PowerPoint Slidesthat may be used for lectures, and a test bank. Of
course, all resources available for students (e.g, tiny tools, the Web References, the
downloadable Reference Library) and professionals are also available.

The Instructor’s Guide for Software Engineering: A Practitioner’s Approach pres-
ents suggestions for conducting various types of software engineering courses, rec-
ommendations for a variety of software projects to be conducted in conjunction with a
course, solutions to selected problems. and a number of useful teaching aids.

Professional Resources. A collection of resources available to industry practitioners
(aswell as students and faculty) includes outlines and samples of software engineering
documents and other work products, a useful set of software engineering checklists,

PREFACE XXix

a catalog of software engineering tools, a comprehensive collection of Web-based re-
sources, and an “adaptable process model” that provides a detailed task breakdown
of the software engineering process.

@ mmect- McGraw-Hill Connect® Computer Science provides

| COMPUTER SCIENCE online presentation, assignment, and assessment solu-
tions. It connects your students with the tools and
resources they’ll need to achieve success. With Connect Computer Sdence you can
deliver assignments, quizzes, and tests online. A robust set of questions and activi-
ties are presented and aligned with the textbook’s learming outcomes. As an instruc-
tor, you can edit existing questions and author entirely new problems. Integrate
grade reports easily with Learning Management Systems (LMS), such as WebCT and
Blackboard—and much more. ConnectPlus® Computer Sdence provides students
with all the advantages of Connect Computer Science, plus 24/7 online access to a
media-rich eBook, allowing seamless integration of text, media, and assessments. To
learn more, visit www.mcgrawhillconnect.com

I L E /_\ R N S M /_\ R T' McGraw-HillLearnSmart® is avail-

able as a standalone product or
an integrated feature of McGraw-Hill Connect Computer Science. It is an adaptive
learning system designed to help students learn faster, study more efficiently, and
retain more knowledge for greater success. LearnSmart assesses a student’s knowl-
edge of course content through a series of adaptive questions. It pinpoints concepts
the student does not understand and maps out a personalized study plan for success.
This innovative study tool also has features that allow instructors to see exactly what
students have accomplished and a built-in assessment tool for graded assignments.
Visit the following site for a demonstration. www.mhlearnsmart.com

I S M /_\ R T B D D ™ Powered by the intelligent and adap-

tive LearnSmartengine, SmartBook™
is the first and only continuously adaptive reading experience available today. Distin-
guishing what students know from what they don't, and honing in on concepts they
are most likely to forget, SmartBook personalizes content for each student. Reading
isno longer a passive and linear experience but an engaging and dynamic one, where
students are more likely to master and retain important concepts, coming to class
better prepared. SmartBook includes powerful reports that identify specific topics
and learning objectives students need to study.

When coupled with its online support system, the eighth edition of Software
Engineering: A Practitioner’'s Approach, provides flexibility and depth of content that
cannot be achieved by a textbook alone.

With this edition of Software Engineering: A Practitioner’s Approach, Bruce Maxim
joins me (Roger Pressman) as a coauthor of the book. Bruce brought copious software
engineering knowledge to the project and has added new content and insight that will
be invaluable to readers of this edition.

Acknowledgments. Special thanks go to Tim Lethbridge of the University of Ottawa
who assisted us in the development of UML and OCL examples, and developed the
case study that accompanies this book, and Dale Skrien of Colby College, who devel-
oped the UML tutorialin Appendix 1. Their assistance and comments were invaluable.

